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 باحثينيبرز أهميته ويقربه للاختار مركز أبحاث الذكاء الاصطناعي )أيرند( هذا البحث لتقديم تلخيص 

 

تي التصنيف الزمني يعتمد على دمج بين طريق (ASR) يقدم هذا البحث نموذجًا مبتكرًا للتعرف على الكلام التلقائي

عميق باستخدام  داخل إطار عمل موحّد. يستفيد النموذج من تشفير (Attention) وآلية الانتباه (CTC) المترابط

مهام لتحسين الأداء والدقة في ال (RNN-LM) ونموذج لغوي متكرر (CNN) افيةالشبكات العصبية الالتف

 .المختلفة

 
 :النقاط الرئيسية في البحث

 :مفهوم النموذج المدمج

 دمج CTC والاهتمام: 

على  CTC والانتباه لضمان الاستفادة من مزايا كل منهما؛ حيث يعمل CTC يتم الجمع بين طريقتي

 .تيةبينما يتيح الاهتمام مرونة في نمذجة العلاقات بين الرموز الصو فرض المحاذاة الزمنية،

 التشفير باستخدام شبكة CNN عميقة: 

 .لتحسين جودة الميزات الصوتية المستخرجة VGG مشابهة لـ CNN يعتمد النموذج على شبكة

 دمج النموذج اللغوي المتكرر (RNN-LM): 

 .ق اللغوي أثناء عملية فك التشفيريتم إدخال نموذج لغوي لتحسين التنبؤ بالسيا

 
 :معالجة التحديات في النماذج التقليدية

 :تعقيد الهيكلية .1

ي(، وغالنموذج الل النماذج التقليدية تعتمد على تقسيم النظام إلى عدة وحدات )النماذج الصوتية، القاموس،

 .مما يجعلها معقدة وصعبة الاستخدام

 :الاعتماد على المعرفة اللغوية .2

 درتها علىمن ق النماذج التقليدية تتطلب موارد لغوية إضافية مثل القواميس والنماذج الصوتية، مما يحد

 .التعميم للغات جديدة

 :صعوبة المحاذاة الزمنية .3

يود جود قتواجه نماذج الانتباه صعوبة في المحاذاة الزمنية بين الإشارات الصوتية والنصوص دون و

 .زمنية

 
 :المدمج آلية عمل النموذج

 :عميق CNN التشفير باستخدام .1

ية لاستخراج ميزات صوت (VGG مستوحاة من) عميقة CNN يتم تمرير الإشارات الصوتية عبر شبكة

 .غنية وفعالة

 :والانتباه CTC الدمج بين .2

o أثناء التدريب: يتم الجمع بين أهداف CTC موالانتباه في عملية تعلم متعددة المها (MTL) 

 .الزمنية ودقة النموذج لتحسين المحاذاة

o أثناء فك التشفير: يتم دمج احتمالات CTC سلسل مع مخرجات الانتباه للحصول على أفضل ت

 .متوقع

 :RNN-LM تحسين التنبؤ باستخدام .3

o يتيح إدخال النموذج اللغوي المتكرر (RNN-LM)  تحسين التنبؤات بناءً على السياق اللغوي

 .للرموز الصوتية



 
 :أهمية البحث

 :ين الدقة والكفاءةتحس

 زيادة في الدقة: 

 .% مقارنة بالنماذج التقليدية10-5بنسبة تتراوح بين  (CER) انخفاض معدل الخطأ

 خفض التعقيد الحسابي: 

 .العميق وآلية الانتباه يقلل من الحاجة إلى النماذج التقليدية المعقدة CNN الجمع بين

 :حل مشكلات النماذج التقليدية

  إلى الموارد اللغويةإزالة الحاجة: 

 .ويةيعمل النموذج مباشرة على البيانات الصوتية والنصية دون الحاجة إلى قاموس أو موارد لغ

 معالجة المشاكل الزمنية: 

 .والانتباه يضمن محاذاة زمنية دقيقة دون التضحية بالمرونة CTC الجمع بين

 :تعزيز التطبيقات متعددة المهام

 ماتالكل دامه بسهولة في مهام متعددة مثل التعرف على النصوص أو تصنيفالنموذج المدمج يمكن استخ. 

 
 :التطبيقات المحتملة

 :(ASR) التعرف على الكلام التلقائي 1. 

 صوتيةيمكن تطبيق النموذج لتحسين أنظمة التعرف على الكلام في الهواتف الذكية والمساعدات ال. 

 :التطبيقات اللغوية2. 

 الفورية أو أنظمة النسخ الصوتي للمحاضرات والاجتماعات تحسين أدوات الترجمة. 

 :التطبيقات الطبية3. 

 يمكن استخدام التقنية لتحويل الإملاءات الطبية إلى نصوص دقيقة. 

 :التطبيقات متعددة اللغات 4. 

 يتيح النموذج بناء أنظمة ASR وية جديدة للغات غير مدعومة بسهولة دون الحاجة إلى موارد لغ

 .متخصصة

 
 :القيود والتحديات

 :متطلبات التدريب 1. 

 التعقيد الحاسوبي: 

 .يتطلب تدريب النموذج موارد حاسوبية عالية خاصة مع البيانات الضخمة



 :جودة المحاذاة2. 

  ًنات ذات ع بياميعتمد النموذج على جودة المحاذاة بين الإشارات الصوتية والنصوص، مما قد يكون تحديا

 .ضوضاء عالية

 :ابلية التعميمق3. 

 قد يواجه النموذج صعوبة في التعميم على لهجات أو لغات جديدة تختلف عن بيانات التدريب. 

 
 :الإنجازات الرئيسية للبحث

 :تحسين الدقة في المهام اللغوية .1

 .التقليدية على مهام اللغة اليابانية والصينية مقارنة بالنماذج (CER) انخفاض كبير في معدل الخطأ

 :نموذج موحّدتقديم  .2

 .فصلةوالانتباه مع النموذج اللغوي لتحسين الأداء دون الحاجة إلى وحدات من CTC دمج سلس بين

 :التفوق على النماذج الهجينة التقليدية .3

 .DNNو HMM تحقيق أداء يتفوق على تقنيات التعرف على الكلام التقليدية التي تعتمد على
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Abstract 

We present a state-of-the-art end-to-end Automatic Speech 
Recognition (ASR) model. We learn to listen and write charac- 
ters with a joint Connectionist Temporal Classification (CTC) 
and attention-based encoder-decoder network. The encoder 

is a deep Convolutional Neural Network (CNN) based on the 
VGG network. The CTC network sits on top of the encoder 
and is jointly trained with the attention-based decoder. Dur- 
ing the beam search process, we combine the CTC predictions, 
the attention-based decoder predictions and a separately trained 
LSTM language model. We achieve a 5-10% error reduction 
compared to prior systems on spontaneous Japanese and Chi- 
nese speech, and our end-to-end model beats out traditional hy- 

brid ASR systems. 

Index Terms: end-to-end speech recognition, encoder-decoder, 
connectionist temporal classification, attention model 

 

1. Introduction 

Automatic Speech Recognition (ASR) is currently a mature set 
of technologies that have been widely deployed, resulting in 
great success in interface applications such as voice search [1]. 
A typical ASR system is factorized into several modules includ- 
ing acoustic, lexicon, and language models based on a prob- 
abilistic noisy channel model [2]. Over the last decade, dra- 
matic improvements in acoustic and language models have been 
driven by machine learning techniques known as deep learning 
[3]. 

However, current systems lean heavily on the scaffolding of 
complicated legacy architectures that grew up around traditional 

techniques, including Hidden Markov Model (HMM), Gaussian 
Mixture Model (GMM), Deep Neural Networks (DNN), fol- 
lowed by sequence discriminative training [4]. We also need to 
build a pronunciation dictionary and a language model, which 
require linguistic knowledge, and text preprocessing such as to- 
kenization for some languages without explicit word bound- 
aries. Finally, these modules are integrated into a Weighted 
Finite-State Transducer (WFST) for efficient decoding. Conse- 
quently, it is quite difficult for non-experts to use/develop ASR 

systems for new applications, especially for new languages. 

End-to-end ASR has the goal of simplifying the above 
module-based architecture into a single-network architecture 
within a deep learning framework, in order to address the above 
issues. End-to-end ASR methods typically rely only on paired 

acoustic and language data without linguistic knowledge, and 
train the model with a single algorithm. Therefore, the approach 
potentially makes it possible to build ASR systems without ex- 
pert knowledge. 

There are two major types of end-to-end architectures for 

ASR: attention-based methods use an attention mechanism to 
perform alignment between acoustic frames and recognized 
symbols [5, 6, 7, 8, 9], and Connectionist Temporal Classi- 
fication (CTC), uses Markov assumptions to efficiently solve 
sequential problems by dynamic programming [10, 11, 12]. 

While CTC requires several conditional independence assump- 
tions to obtain the label sequence probabilities, the attention- 
based methods do not use those assumptions. This property is 
advantageous to sequence modeling, but the attention mecha- 
nism is too flexible in the sense that it allows extremely non- 
sequential alignments like the case of machine translation, al- 
though the alignments are usually monotonic in speech recog- 
nition. 

To solve this problem, we have proposed joint CTC- 
attention-based end-to-end ASR [13], which effectively utilizes 
a CTC objective during training of the attention model. Specif- 

ically, we attach the CTC objective to an attention-based en- 
coder network as a regularization technique, which also encour- 

ages the alignments to be monotonic. In our previous work, we 
demonstrated the approach improves the recognition accuracy 

over the individual use of CTC or attention-based method [13]. 
In this paper, we extend our prior work by incorporating 

several novel extensions to the model, and investigate the per- 
formance compared to traditional hybrid systems. The exten- 
sions we introduced are as follows. 

1. Joint CTC-attention decoding: In our prior work, we 
used the CTC objective only for training. In this work, 
we use the CTC probabilities for decoding in combi- 
nation with the attention-based probabilities. We pro- 
pose two methods to combine their probabilities, one is 

a rescoring method and the other is a one-pass method. 

2. Deep Convolutional Neural Network (CNN) encoder: 
We incorporate a VGG network in the encoder network, 
which is a deep CNN including 4 convolution and 2 max- 
pooling layers [14]. 

3. Recurrent Neural Network Language Model (RNN- 
LM): We combine an RNN-LM network in parallel with 
the attention decoder, which can be trained separately or 
jointly, where the RNN-LM is trained with character se- 

quences. 

Although the efficacy of a deep CNN encoder has already been 
demonstrated in end-to-end ASR [15, 16], the other two exten- 
sions have not been experimented with yet. We present ex- 
perimental results showing efficacy of each technique, and fi- 

nally we show that our joint CTC-attention end-to-end ASR 
achieves performance superior to several state-of-the-art hybrid 
ASR systems in Spontaneous Japanese and Mandarin Chinese 
tasks. 
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2. Joint CTC-attention 

In this section, we explain the joint CTC-attention framework, 
which utilizes both benefits of CTC and attention during train- 
ing [13]. 

 

2.1. Connectionist Temporal Classification (CTC) 

Connectionist Temporal Classification (CTC) [17] is a latent 
variable model that monotonically maps an input sequence to 
an output sequence of shorter length. We assume here that the 

model outputs L-length letter sequence C = {cl ∈ U|l = 
1, · · · , L} with a set of distinct characters U. CTC introduces 
framewise letter sequence with an additional ”blank” symbol 
Z = {zt ∈ U ∪ blank|t = 1, · · · , T }. By using conditional in- 

dependence assumptions, the posterior distribution p(C|X) is 
factorized as follows: 

Eq. (6) converts input feature vectors X into a framewise hid- 
den vector ht in an encoder network based on BLSTM, i.e., 

Encoder(X) , BLSTM(X). Attention(·) in Eq. (7) is based 
on a content-based attention mechanism with convolutional fea- 

tures, as described in [18]. alt is an attention weight, and 
represents a soft alignment of hidden vector ht for each out- 

put cl based on the weighted summation of hidden vectors to 

form letter-wise hidden vector rl in Eq. (8). A decoder net- 
work is another recurrent network conditioned on previous out- 

put cl−1 and hidden vector ql−1, similar to RNNLM, in ad- 

dition to letter-wise hidden vector rl. We use Decoder(·) , 
Softmax(Lin(LSTM(·))). 

Attention-based ASR does not explicitly separate each 
module, but it implicitly combines acoustic models, lexicon, 
and language models as encoder, attention, and decoder net- 
works, which can be jointly trained as a single deep neural net- 

p(C|X) ≈ 
Σ Y 

p(zt|z 
 

t−1 , C)p(zt|X) p(C) (1) 
work. Compared with CTC, attention-based models make pre- 

dictions conditioned on all the previous predictions, and thus 
t 

 ̀
,p 

˛
(

¸
C|X) 

x 

 

As shown in Eq. (1), CTC has three distribution components by 
the Bayes theorem similar to the conventional hybrid ASR case, 
i.e., framewise posterior distribution p(zt|X), transition prob- 

ability p(zt|zt−1, C), and letter-based language model p(C). 
We also define the CTC objective function pctc(C|X) used in 
the later formulation. 

The framewise posterior distribution p(zt|X) is condi- 

tioned on all inputs X, and it is quite natural to be modeled 
by using bidirectional long short-term memory (BLSTM): 

p(zt|X) = Softmax(Lin(ht)) (2) 

ht = BLSTM(X). (3) 

Softmax(·) is a softmax activation function, and Lin(·) is a lin- 
ear layer to convert hidden vector ht to a (|U| + 1) dimensional 

vector (+1 means a blank symbol introduced in CTC). 
Although Eq. (1) has to deal with a summation over all 

possible Z, we can efficiently compute this marginalization 

by using dynamic programming thanks to the Markov prop- 
erty. In summary, although CTC and hybrid systems are simi- 
lar to each other due to conditional independence assumptions, 
CTC does not require pronunciation dictionaries and omits an 
HMM/GMM construction step. 

2.2. Attention-based encoder-decoder 

Compared with CTC approaches, the attention-based approach 

does not make any conditional independence assumptions, and 

directly estimates the posterior p(C|X) based on the chain rule: 

p(C|X) = 
Y 

p(cl|c1, · · · , cl−1, X), (4) 
l 

,patt(C|X) 

 

where patt(C|X) is an attention-based objective function. 

p(cl|c1, · · · , cl−1, X) is obtained by 

p(cl|c1, · · · , cl−1, X) = Decoder(rl, ql−1, cl−1) (5) 

ht = Encoder(X) (6) 

alt = Attention({al−1}t, ql−1, ht) (7) 

rl = 
Σ 

altht. (8) 

t 

can learn language. However, the cost of using an explicit align- 
ment without monotonic constraints means the alignment can 
become impaired. 

 

2.3. Multi-task learning 

In [13], we used the CTC objective function as an auxiliary task 

to train the attention model encoder within the multi-task learn- 
ing (MTL) framework. This approach substantially reduced ir- 
regular alignments during training and inference, and provided 
improved performance in several end-to-end ASR tasks. 

The joint CTC-attention shares the same BLSTM encoder 
with CTC and attention decoder networks. Unlike the sole at- 
tention model, the forward-backward algorithm of CTC can en- 
force monotonic alignment between speech and label sequences 

during training. That is, rather than solely depending on the 
data-driven attention mechanism to estimate the desired align- 
ments in long sequences, the forward-backward algorithm in 
CTC helps to speed up the process of estimating the desired 
alignment. The objective to be maximized is a logarithmic 
linear combination of the CTC and attention objectives, i.e., 

pctc(C|X) in Eq. (1) and patt(C|X) in Eq. (4): 

 

LMTL = λ log pctc(C|X) + (1 − λ) log patt(C|X), (9) 

with a tunable parameter λ : 0 ≤ λ ≤ 1. 

3. Extended joint CTC-attention 

This section introduces three extensions to our joint CTC- 
attention end-to-end ASR. Figure 1 shows the extended archi- 
tecture, which includes joint decoding, a deep CNN encoder 
and an RNN-LM network. 

 

3.1. Joint decoding 

It is already been shown that the CTC objective helps guide the 
attention model during training to be more robust and effective, 
and produce a better model for speech recognition [13]. In this 
section, we propose to use the CTC predictions also in the de- 
coding process. 

The inference step of attention-based speech recognition is 
performed by output-label synchronous decoding with a beam 
search. But, we take the CTC probabilities into account to find 

a better aligned hypothesis to the input speech, i.e. the decoder 

finds the most probable character sequence Cˆ given speech in- 
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3.2. Encoder with Deep CNN 

Our encoder network is boosted by using deep CNN, which is 
motivated by the prior studies [16, 15]. We use the initial layers 
of the VGG net architecture [14] followed by BLSTM layers 
in the encoder network. We used the following 6-layer CNN 
architecture: 

Convolution2D(# in = 3, # out = 64, filter = 3 × 3) 

Convolution2D(# in = 64, # out = 64, filter = 3 × 3) 

Figure 1: Extended Joint CTC-attention ASR: the shared en- 
coder contains a VGG net followed by BLSTM layers and 
trained by both CTC and attention model objectives simulta- 

neously. The joint decoder predicts an output label sequence by 
the CTC, attention decoder and RNN-LM. The extensions made 
in this paper are colored in red. 

 

put X, according to 

Cˆ = arg max {λ log pctc(C|X) 
C∈U∗ 

Maxpool2D(patch = 3 × 3, stride = 2 × 2) 

Convolution2D(# in = 64, # out = 128, filter = 3 × 3) 

Convolution2D(# in = 128, # out = 128, filter = 3 × 3) 

Maxpool2D(patch = 3 × 3, stride = 2 × 2) 

The initial three input channels are composed of the spectral 
features, delta, and delta delta features. Input speech fea- 

ture images are downsampled to (1/4 × 1/4) images along 
with the time-frequency axises through the two max-pooling 
(Maxpool2D) layers. 

+(1 − λ) log patt(C|X)} . (10) 

In the beam search process, the decoder computes a score 
of each partial hypothesis. With the attention model, the score 
can be computed recursively as 

αatt(gl) = αatt(gl−1) + log p(c|gl−1, X), (11) 

where gl is a partial hypothesis with length l, and c is the last 

character of gl, which is appended to gl−1, i.e. gl = gl−1 · c. 

The score for gl is obtained as the addition of the original score 

α(gl−1) and the conditional log probability given by the atten- 
tion decoder in (5). During the beam search, the number of par- 
tial hypotheses for each length is limited to a predefined num- 
ber, called a beam width, to exclude hypotheses with relatively 
low scores, which dramatically improves the search efficiency. 

However, it is non-trivial to combine CTC and attention- 
based scores in the beam search, because the attention decoder 
performs it character-synchronously while CTC does it frame- 
synchronously. To incorporate CTC probabilities in the score, 
we propose two methods. One is a rescoring method, in which 
the decoder first obtains a set of complete hypotheses using the 
beam search only with the attention model, and rescores each 

hypothesis using Eq. (10), where pctc(C|X) can be computed 

with the CTC forward algorithm. The other method is a one- 
pass decoding, in which we compute the probability of each 
partial hypothesis using CTC and the attention model. Here, we 
utilize the CTC prefix probability [19] defined as the cumulative 

probability of all label sequences that have gl as their prefix: 

3.3. Decoder with RNN-LM 

We combine an RNN-LM network in parallel with the atten- 
tion decoder, which can be trained separately or jointly, where 
the RNN-LM is trained with character sequences without word- 

level knowledge. Although the attention decoder implicitly in- 
cludes a language model as in Eq. (5), we aim at introducing 
language model states purely dependent on the output label se- 
quence in the decoder, which potentially brings a complemen- 
tary effect. 

As shown in Fig. 1, the RNN-LM probabilities are used to 
predict the output label jointly with the decoder network. The 
RNN-LM information is combined at the logits level or pre- 
softmax. If we use a pre-trained RNN-LM without any joint 
training, we need a scaling factor. If we train the model jointly 
with the other networks, we may combine their pre-activations 
before the softmax without a scaling factor as this is learnt. In 

effect, the attention-based decoder learns to use the LM prior. 

Although it is possible to apply the RNN-LM as a rescor- 
ing step, we combine the RNN-LM network in the end-to-end 

model because we do not wish to have an additional rescoring 
step. Also, we can view this as a single large neural network 
model, even if parts of it are separately pretrained. Further- 
more, the RNN-LM can be trained jointly with the encoder and 
decoder networks. 

 

4. Experiments 

We used Japanese and Mandarin Chinese ASR benchmarks to 

p(gl, . . . |X) = 
Σ 

ν∈(U∪{<eos>})+ 

 

and we obtain the CTC score as 

P (gl · ν|X), (12) 
show the effectiveness of the extended joint CTC-attention ap- 

proaches. 

The Japanese task is lecture speech recognition using the 
Corpus of Spontaneous Japanese (CSJ) [20]. CSJ is a standard 
Japanese ASR task based on a collection of monologue speech 

αctc(gl) = log p(gl, . . . |X), (13) 

where ν represents all possible label sequences except the 

empty string, and <eos> indicates the end of sentence. The 
CTC score can not be obtained recursively as in Eq. (11), but 

data including academic lectures and simulated presentations. It 
has a total of 581 hours of training data and three types of eval- 
uation data, where each evaluation task consists of 10 lectures 
(totally 5 hours). The Chinese task is HKUST Mandarin Chi- 

nese conversational telephone speech recognition (MTS) [21]. 

  



Table 1: Character Error Rate (CER) for conventional attention 
and proposed joint CTC-attention end-to-end ASR. Corpus of 
Spontaneous Japanese speech recognition (CSJ) task. 

 
Model Task1 Task2 Task3 
Attention 11.4 7.9 9.0 
MTL 10.5 7.6 8.3 

MTL + joint decoding (rescoring) 10.1 7.1 7.8 
MTL + joint decoding (one-pass) 10.0 7.1 7.6 
MTL-large + joint dec. (one-pass) 8.4 6.2 6.9 

+ RNN-LM (separate) 7.9 5.8 6.7 

DNN-hybrid [27]∗ 9.0 7.2 9.6 
DNN-hybrid 8.4 6.9 7.1 

CTC-syllable [28] 9.4 7.3 7.5 

(∗using only 236 hours for acoustic model training) 

 
It has 5 hours recording for evaluation, and we extracted 5 hours 
from training data as a development set, and used the rest (167 
hours) as a training set. 

As input features, we used 80 mel-scale filterbank coef- 
ficients with pitch features as suggested in [22, 23] for the 
BLSTM encoder, and adding their delta and delta delta features 
for the CNN BLSTM encoder [15]. The encoder was a 4-layer 
BLSTM with 320 cells in each layer and direction, and linear 
projection layer is followed by each BLSTM layer. The 2nd and 
3rd bottom layers of the encoder read every second hidden state 
in the network below, reducing the utterance length by the fac- 

tor of 4 (subsampling). When we used the VGG architecture, 
as described in Section 3.2 as the CNN BLSTM encoder, the 
following BLSTM layers did not subsample the input features. 
We used the location-based attention mechanism [18], where 
the 10 centered convolution filters of width 100 were used to 
extract the convolutional features. The decoder network was a 
1-layer LSTM with 320 cells. We also built an RNN-LM as 
a 1-layer LSTM for each task, where the CSJ model had 1000 

cells and the MTS model had 800 cells. Each RNN-LM was 
first trained separately using the transcription, combined with 
the decoder network, and optionally re-trained with the encoder, 
decoder and CTC networks jointly. Note that there is no extra 
text data been used here but we believe more untranscribed data 
definitely can further improve the results. 

The AdaDelta algorithm [24] with gradient clipping [25] 

was used for the optimization. We used the λ = 0.1 for CSJ 

and the λ = 0.5 for MTS in training and decoding based on 

our preliminary investigation. The beam width was set to 20 
in decoding under all conditions. The joint CTC-attention ASR 
was implemented by using the Chainer deep learning toolkit 
[26]. 

Tables 1 and 2 show character error rates (CERs) of evalu- 
ated methods in CSJ and MTS tasks, respectively. In both tasks, 

we can see the effectiveness of joint decoding over the base- 
line attention model and our prior work with multi-task learning 
(MTL), especially showing the significant improvement of the 
joint decoding with the one-pass method and RNN-LM integra- 
tion. We performed retraining of the entire network including 
the RNN-LM only in MTS task, because of time limitation. The 
joint training further improved the performance, which reached 
32.1% CER as shown in Table 2. 

We also built a larger network (MTL-large) for CSJ, which 
had a 6-layer encoder network and an RNN-LM, to compare our 
method with the conventional state-of-the-art techniques ob- 
tained by using linguistic resources. The state-of-the-art CERs 
of DNN-sMBR hybrid systems are obtained from the Kaldi 

Table 2: Character Error Rate (CER) for conventional atten- 
tion and proposed joint CTC-attention end-to-end ASR. HKUST 
Mandarin Chinese conversational telephone speech recognition 
(MTS) task. 

 
Model dev eval 
Attention 40.3 37.8 
MTL 38.7 36.6 

+ joint decoding (rescoring) 35.9 34.2 
+ joint decoding (one-pass) 35.5 33.9 
+ RNN-LM (separate) 34.8 33.3 
+ RNN-LM (joint training) 33.6 32.1 

MTL+joint dec. (speed perturb., one-pass) 32.1 31.4 
+ MTL-large 31.0 29.9 

+ RNN-LM (separate) 30.2 29.2 
MTL+joint dec. (speed perturb., one-pass) - - 
+ VGG net 30.0 28.9 

+ RNN-LM (separate) 29.1 28.0 

DNN-hybrid – 35.9 
LSTM-hybrid (speed perturb.) – 33.5 
CTC with language model [23] – 34.8 
TDNN-hybrid, lattice-free MMI (speed 
purturb.) [29] 

– 28.2 

 
recipe [27] and a system based on syllable-based CTC with 
MAP decoding [28]. The Kaldi recipe systems originally only 
use academic lectures (236h) for AM training, but we extended 
to use all training data (581h). The LMs were trained with all 
training-data transcriptions. Finally, our extended joint CTC- 
attention end-to-end ASR achieved lower CERs than already 
reported CERs obtained by the hybrid approaches for CSJ. 

In MTS task, we generated more training data by linearly 
scaling the audio lengths by factors of 0.9 and 1.1 (speed per- 
turb.). The final model including the VGG net and RNN- 
LM achieved 28.0% without using linguistic resources, which 
defeats state-of-the-art systems including recently-proposed 

lattice-free MMI methods. Although we could not apply 
jointly-trained RNN-LM when using speed perturbation be- 
cause of time limitation, we hopefully obtain further improve- 
ment by joint training. 

 

5. Conclusion 

In this paper, we proposed a novel approach for joint CTC- 
attention decoding and RNN-LM integraton for end-to-end 

ASR model. We also explored deep CNN encoder to further im- 
prove the extracted acoustic features. Together, we significantly 
improved current best end-to-end ASR system without any lin- 
guistic resources such as morphological analyzer and pronun- 
ciation dictionary, which are essential components of conven- 
tional Mandarin Chinese and Japanese ASR systems. Our end- 
to-end joint CTC-attention model outperforms hybrid systems 
without the use of any explicit language model on our Japanese 

task. Moreover, our method achieves state-of-the-art perfor- 
mance when combined with a pretrained character level lan- 
guage model on both Chinese and Japanese, even when com- 
pared to conventional hybrid-HMM systems. We note that de- 
spite using a pretrained RNN-LM, the model can be seen as one 
big neural network with a seperately pretrained components. Fi- 
nally, we emphasize the text data we used to train our RNN-LM 
is from the same text data in the labelled audio data, we did 
not use any extra text. We believe our model can be further 

improved using vast quantities of unlabelled data to pretrain a 
RNN-LM and subsequently jointly trained with our model. 
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